

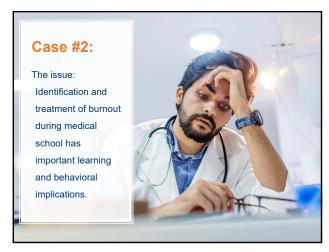
2

Overview of Today

Validity → Reliability → Validity

3 Cases will be used throughout the workshop in small and large group exercises to illuminate reliability and validity concepts

© 2019 Association of American Medical Co


Students in the Medicine clerkship are randomized to 2 groups. One group (usual care) is given access to a library of video clips and invited to two optional practice sessions with standardized patients.

Case #1:

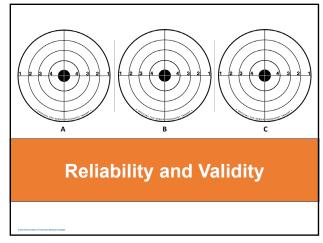
The second (treatment) group is given a mini-CEX (mini clinical evaluation) booklet. They are instructed to ask attendings/residents to observe and assess them doing an actual abbreviated physical examination on a patient. They should do this weekly over the 8 week clerkship. The rating form has 7 items.

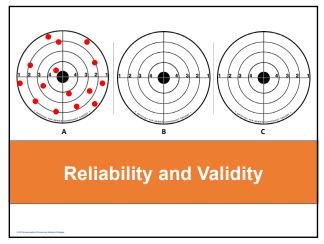
At the end of the clerkship all students take a fourstation OSCE with cases focused on physical examination. The raters are blinded to Treatment/Control group assignment.

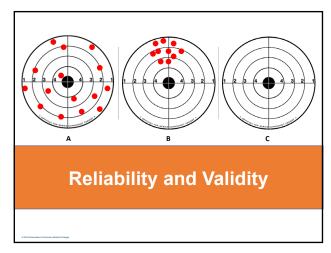
5

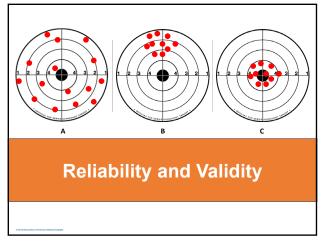
Case #2:

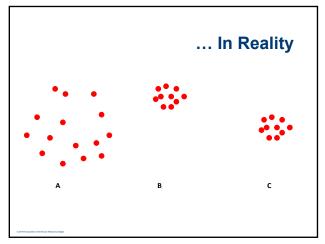
All students in all 4 years at a medical school complete an anonymous questionnaire with demographic information, the Maslach Burnout Inventory, a Grit Scale, and self-report of treatment for depression and/or other emotional issues.

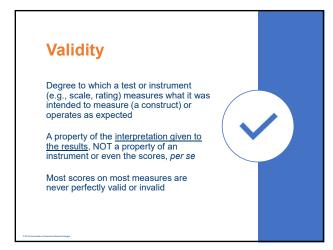



8


Case #3:

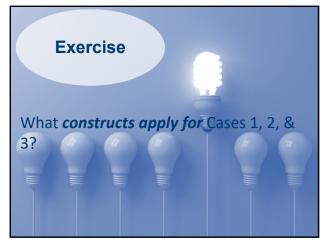

A time-motion study was done. Random samples of interns from programs that had two different duty hour structures were shadowed by research assistants for 3 shifts. Research assistants carried a

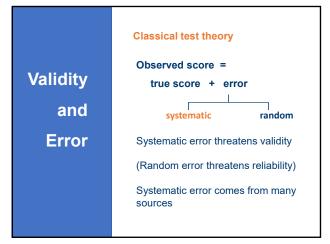

tablet and recorded the type and location of activity the interns were engaged in.

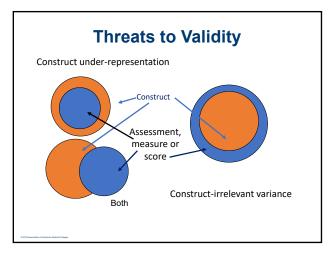


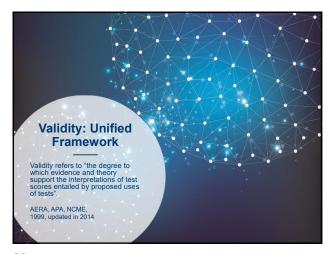
What's the construct?

USMLE Step I USMLE Step II Beck Depression Inventory Kolb Learning Style Inventory Maslach Burnout Inventory




17


Why does this matter?


- All instruments and assessment procedures are intended to measure a construct (inference)
- 2. All validity is construct validity
 - How well do instrument scores measure the intended construct
 - As applied to specific purpose (use)

Validity: Unified Framework The Validity Hypothesis

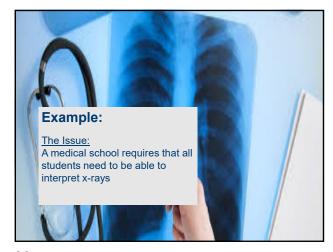
Validity is a *hypothesis*

- Sources of validity evidence contribute to accepting (or rejecting) the hypothesis
- How "*much*" evidence you need varies with the type of assessment
- Usually not a dichotomous "valid" or "invalid" decision

23

Validity: Unified Framework

NOT a dichotomous "valid" or "invalid" decision


NOT different types of validity for the measure

Different **types** of evidence for validity of judgments made on the basis of the scores

Types of Evidence

- 1. Content
- 2. Internal Structure
- 3. Relations to Other Variables
- 4. Response Processes
- 5. Consequences

25

26

Example

Fourth year medical students complete an online quiz with 10 x-rays.

For each x-ray quiz item, the student selects the preferred diagnosis from an extended matching list of 15-20 options.

Students have 15 minutes to complete the quiz.

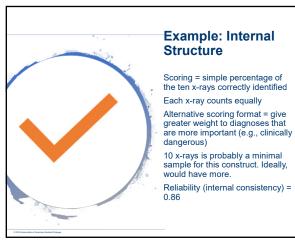
How **well** does the content of the assessment map onto the construct?

- Themes, wording, and expert review
- A description of steps taken to ensure items represent the target construct

Validity
Evidence:
Content

28

29



Degree to which the **structure** of the assessment fits the underlying construct. Often measured using:

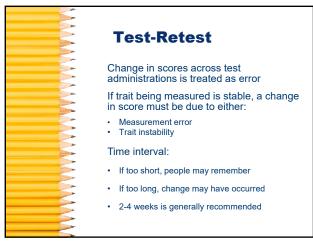
- · Test-retest reliability
- Internal consistency reliability, which demonstrates inter-item correlations
- Factor analysis, which identifies item clustering within constructs

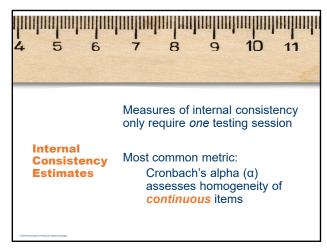
Validity
Evidence:
Internal
Structure

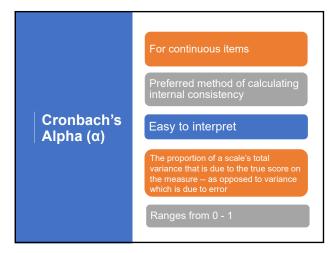
31

32

Test-Retest (& Intra-rater) Reliability


Give a test (make a rating - the rater as the instrument)


Allow time to pass


Give another test (make another rating)

Correlate the two test scores (ratings)

Interpreting α

General guidelines:

.70 is adequate (although lower alphas are sometimes reported)

.80 - .85 is good

.90 or higher indicate significant overlap in item content -- scale can probably be shortened

37

Factors Influencing Reliability

Test Length

· Longer tests give more reliable scores

Group Heterogeneity

• The more heterogenous the group, the higher the reliability

Objectivity of Scoring

• The more "objective" (i.e., clear) the scoring, the higher the reliability

38

Inter-rater Reliability

Multiple judges independently code the same observations (learners or behaviors) using the same criteria

Examples:

- · medical record reviews
- · clinical skills
- oral examinations

Percent Agreement

% of agreement in coding between raters

Number of agreements / total number of cases (n)

Starts with a contingency table

Rater A					
Rater B	YES (Occurrence)	NO (Nonoccurrence)	TOTAL		
YES (Occurrence)	5 (A)	2 (B)	7 (G)		
NO (Nonoccurrence)	1 (c)	2 (D)	3 (H)		
TOTAL	6 (E)	4 (F)	10 (1)		
	Total % Agreement =	(A + D) / I (5 + 2) / 10			

Percent Agreement

Pros

Frequently used

Easy to calculate

Interpretation is intuitive

Cons

Does not account for chance agreements

This is a **HUGE** point

43

Kappa

Controls for the problem of $\underline{\text{inflated}}$ percent agreement due to chance

Ranges from +1.00 to -1.00

- +1.00 = 100% of the agreement above chance possible
- 0 = no agreement above that expected by chance
- -1.00 = 100% of the <u>disagreement</u> below chance possible

44

Kappa

Rater A					
Rater B	YES (Occurrence)	NO (Nonoccurrence)	TOTAL		
YES (Occurrence)	5	2	7		
NO (Nonoccurrence)	1	2	3		
TOTAL	6	4	10		

Observed agreement = .70

Chance agreement = correction based on observed marginal data – i.e., seeing how unbalanced the observed distributions are – 6 of 10 for Rater A and 7 of 10 for Rater B - the correction for chance is .54

Kappa = (Obs. - Chance) / (1 - Chance)

Kappa = (.70 - .54) / (1 - .54) = .35

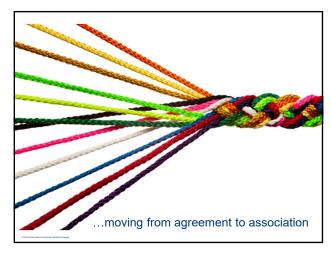
Kappa

General interpretation guidelines:

0 - 0.2 - slight

0.2 - 0.4 - fair

0.4 - 0.6 - moderate


0.6 - 0.8 - substantial

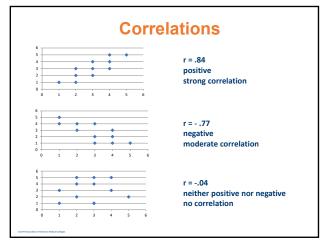
0.8 - 1.0 - almost perfect

46

Sensitive to prevalence rates • Higher kappas more likely when prevalence is near 50%; lower kappas more likely when prevalence is either high or low Difficult to compare kappa across studies

47

Correlation Coefficients


Indicate the direction/sign of the association

- sign...as one goes up, the other goes down
- + sign...as one goes up, the other also goes up

Indicate the size of the association

- **-1** = perfect negative relationship
- +1 = perfect positive relationship

49

50

Is a measure of changes in both magnitude and order: Magnitude: a change in mean value **Intraclass** Order: a change in the order of data Correlation Attractive features: (ask your Handle multiple raters and stimuli (e.g., charts, data SPs, notes) simultaneously analyst for Deal with multiple designs – e.g., all raters rate more all cases (crossed design) versus subsets of details) cases assigned to subsets of raters (nested) Look at both consistency and absolute agreement

Small group exercise What types of internal structure validity evidence

are relevant for Cases, 1, 2, & 3?

 What reliability estimates might you calculate?

Report back to large group for discussion

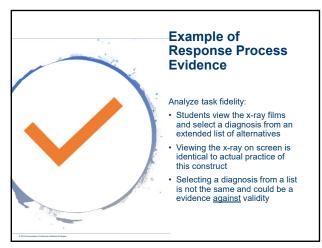
52

The **relationships** between scores on the assessment and other variables (criteria) relevant to the construct being measured

Can be determined using correlation coefficients, regression analysis, etc.

Validity Evidence: Relations to Other **Variables**

How well the cognitive processes required by the assessment map onto the processes of the underlying construct


Examining the reasoning and thought processes of learners/raters

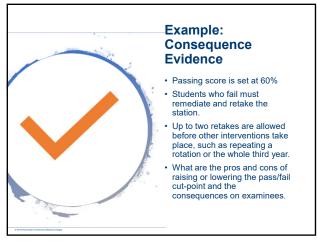
Does cognitive processes required by assessment map onto those required in 'real life'?

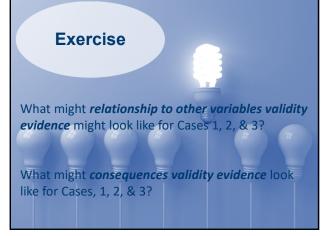
Systems that reduce the likelihood of response error

Validity Evidence: Response Process

55

56

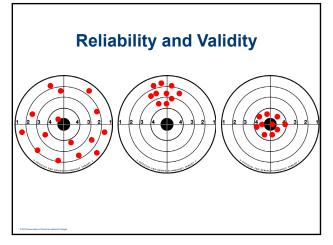

Do the decisions made on the basis of the assessment "work"

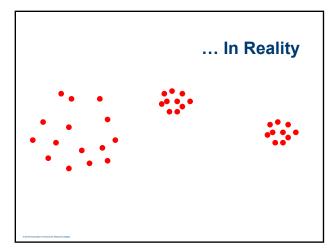

Assessments have intended (often implied) consequences:

- Desired effect
- · Intended purpose

Analyzing consequences of assessments support validity or reveal unrecognized threats to validity

Validity
Evidence:
Consequences


Types of Evidence


- 1. Content
- 2. Internal Structure
- Relations to Other Variables
- 4. Response Processes
- 5. Consequences

61

Summary of Reliability

This reliability	assesses this error	and estimates	and can provide validity evidence for
1. Inter-rater	rater/scorer	rater reliability	Response process
2. Test-retest & intra- rater	individual changes over time or administration	stability	Internal structure
3. Cronbach's alpha	sampling	internal consistency	Internal structure

Remember

Speak of validity of the judgments made from the scores of an instrument when applied to certain population

NOT the reliability and validity of the instrument

65

MERC Evaluation Link
Please go to the link below and complete the evaluation
http://goo.gl/mYQ3Dn
